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Analytical model for concentration/pressure (zeta) impedance of the cathode side of a PEM fuel cell is developed.8

The model is based on transient oxygen mass transport equations through the gas�di�usion and cathode catalyst9

layers. Analytical solution for zeta�impedance is derived and the relation of zeta�impedance and regular cell10

impedance is obtained. In the limit of high oxygen consumption in the catalyst layer, simple equations for the11

static point of zeta impedance are derived. These equations allow one to estimate oxygen transport coe�cients of12

the catalyst and gas di�usion layers from the static point of zeta�spectrum. Qualitative resemblance of the model13

and experimental zeta�spectrum is demonstrated.14
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I. INTRODUCTION16

In PEM fuel cells, potential, current and oxygen concentration are strongly coupled due to the oxygen reduction reaction17

(ORR) on the cathode; hence perturbation of any of the three parameters perturbs the other two. The idea to perturb fuel18

cell potential/current by applying harmonic perturbation of the oxygen concentration δc or pressure δp has been suggested19

in1 and elaborated further in2�5.20

Dividing amplitude of the cell voltage response by δc one gets the concentration impedance, or simply zeta�impedance.21

The great advantage of this technique is that under certain conditions, zeta�spectrum is insensitive to faradaic processes in22

a cell (see below). This feature makes pressure/concentration impedance spectroscopy a powerful tool for studying oxygen23

transport in PEMFCs, especially in the regimes when the characteristic frequency of oxygen transport is close to the ORR24

frequency.25

The concentration/pressure impedance spectroscopy of fuel cells is an emerging �eld and only a few publications are26

devoted to this topic. Niroumand et al.1 applied pressure perturbation to the cell outlet and measured cell voltage response.27

They suggested to use this technique for understanding liquid water transport in the cell. Engebretsen et al.2 applied pressure28

perturbations to the whole cathode �ow �eld using loudspeaker and measured the response of cell voltage in a wide range29

of perturbation frequencies and cell current densities. A qualitative diagnostics of water management in the cell using30

this method has been demonstrated. Sorrentino et al.3 developed a general model for concentration�alternating frequency31

response analysis (cFRA) and illustrated this model by numerical calculations of concentration�potential and concentration�32

current spectra of a PEM fuel cell. Later, Sorrentino et al.6 measured cFRA and EIS spectra of a PEM fuel cell and reported33

qualitative comparison of the two spectra types. Shirsath et al.4 measured standard EIS and pressure�impedance spectra34

and reported higher sensitivity of pressure impedance to water transport in the cell. Kubannek and Krewer5 measured35

perturbation of CO2 �ux from the methanol oxidation reaction (MOR) induced by the perturbation of electrode potential.36

They developed numerical model to analyze MOR kinetics from experimental frequency response data. Kulikovsky7, has37

made attempt to construct analytical model for PEM fuel cell concentration impedance. However, the Nyquist spectra38

derived in7 do not agree with the recent experiments. Recently, a correction to Ref.7 has been published8, which explains39

the reason for faulty �nal equation for the zeta�impedance.40

Calculation of concentration/pressure impedance is under�determined problem. The electric impedance of a PEM fuel cell41

is calculated from the solution of linearized equation for ORR overpotential perturbation. This problem is well�determined in42

a sense that the equation and boundary conditions do not contain unde�ned parameters. On the contrary, the concentration43

impedance ζ appears in the ODE as a boundary condition. To calculate ζ one, therefore, needs an additional closing relation,44

which introduces unknown model parameter to the problem. Below, we providing arguments that in a high�current regime45

of cell operation this model parameter can be set to zero, making the procedure of concentration impedance calculation46

fully determined. This idea leads to zeta�spectra, which closely resemble the shape of experimental spectra. A review of47

pressure impedance literature can be found in4,9.48
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FIG. 1. Schematic of the cell transport layers and the through�plane static shapes of the oxygen concentration c and ORR
overpotential η (Ref.7). Oscillations of η1 occur in time, not in space.

A model for concentration impedance ζ of a PEM fuel cell cathode reported below takes into account oxygen transport49

in the cathode catalyst layer (CCL) and gas di�usion layer (GDL). A closed�form solutions for ζ�impedance are derived50

and relation of zeta�impedance and regular �electric� cell impedance is obtained. In the limit of large oxygen consumption51

in the cathode, analytical expressions for the static limit of zeta�impedance are derived. Finally, qualitative resemblance of52

the model and experimental zeta�spectrum2 is demonstrated.53

II. MODEL54

The model is based on standard macro�homogeneous approximation for the cathode catalyst layer performance10 and it55

employs the following assumptions.56

� Air �ow stoichiometry is large. This means that the characteristic frequency of oxygen transport in channel is large57

and it does not a�ect the zeta�spectra of GDL and CCL.58

� Proton transport in the CCL is fast, meaning that the static η0 and perturbed η1 shapes of the ORR overpotential59

are nearly independent of x̃ (Figure 1).60

The key assumption is the last one; it is ful�lled if the CCL proton conductivity is high so that the following relation holds:61

j0 � σpb/lt (see discussion below). For notations please see Nomenclature section.62

The model is based on the coupled oxygen mass transport equations in the CCL, Eq.(1), and in the GDL, Eq.(2):63

∂c

∂t
−Dox

∂2c

∂x2
= − i∗

4F

(
c

cinh

)
exp

(η
b

)
(1)

64

∂cb
∂x
−Db

∂2cb
∂x2

= 0 (2)

Linearization and Fourier�transform of Eqs.(1), (2) lead to the system of linear equations for the small perturbation65

amplitudes c̃1, c̃1b and η̃
1 in the ω�space11:66

D̃ox
∂2c̃1

∂x̃2
= eη̃

0 (
c̃1 + c̃0η̃1

)
+ iω̃c̃1,

∂c̃1

∂x̃

∣∣∣∣
x̃=0

= 0, c̃1(1) = c̃1b(1) (3)

67

D̃b
∂2c̃1b
∂x̃2

= iω̃c̃1b , D̃b
∂c̃1b
∂x̃

∣∣∣∣
x̃=1+

= D̃ox
∂c̃1

∂x̃

∣∣∣∣
x̃=1−

, c̃1b(1 + l̃b) = c̃1h (4)

where the sign tilde marks the dimensionless variables de�ned according to68

x̃ =
x

lt
, t̃ =

ti∗
4Fcinh

, c̃ =
c

cinh
, η̃ =

η

b
, j̃ =

j

lti∗
, ω̃ =

ω4Fcinh
i∗

, D̃ =
4FDcinh
l2t i∗

, ζ̃ =
ζcinh
b
, Z̃ =

Zlti∗
b

. (5)

Here D stands for Dox and Db, Z is the electric impedance, and the superscripts 0 and 1 mark the static shapes and the69

perturbation amplitudes, respectively.70
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The left boundary condition for Eq.(3) describes zero oxygen �ux in membrane and the right boundary condition expresses71

continuity of the oxygen concentration at the CCL/GDL interface. The boundary conditions for Eq.(4) mean continuity of72

the oxygen �ux at this interface and the �xed (applied) amplitude c̃1h of the oxygen concentration perturbation in the air73

channel.74

Eq.(4) can be directly solved leading to1275

c̃1b(1) = − αD̃ox
∂c̃1

∂x̃

∣∣∣∣
x̃=1−

+ βc̃1h (6)

where76

α =

tanh

(
l̃b

√
iω̃/D̃b

)
√

iω̃D̃b

, β =
1

cosh

(
l̃b

√
iω̃/D̃b

) (7)

It is convenient to introduce zeta�admittance G̃:77

G̃(x̃) =
c̃1(x̃)

η̃1
, (8)

Substituting Eq.(6) into the right boundary condition for Eq.(3) and dividing Eq.(3) by η̃1, we get a problem for G̃(x̃):78

D̃ox
∂2G̃

∂x̃2
= eη̃

0
(
G̃+ c̃0

)
+ iω̃G̃,

∂G̃

∂x̃

∣∣∣∣∣
x̃=0

= 0, G̃(1) + αD̃ox
∂G̃

∂x̃

∣∣∣∣∣
x̃=1−

= βG̃h (9)

where G̃h = c̃1h/η̃
1 = 1/ζ̃ is the measurable value of G̃, which is of primary interest in this work.79

The static shape of the oxygen concentration c̃0(x̃) through the CCL depth obeys to equation80

D̃ox
∂2c̃0

∂x̃2
= c̃0eη̃

0

,
∂c̃0

∂x̃

∣∣∣∣
x̃=0

= 0, c̃0(1) = c̃01 (10)

where c̃01 is the static oxygen concentration at the CCL/GDL interface. Solution to Eq.(10) is81

c̃0 =

c̃01 cosh

(
x̃
√
eη̃0/D̃ox

)
cosh

(√
eη̃0/D̃ox

) . (11)

III. RESULTS AND DISCUSSION82

A. General solution83

Substituting Eq.(11) into Eq.(9) and solving the resulting equation, we get84

G̃(x̃) =

(
eη̃

0

c̃01

(
αD̃oxφ0 tanhφ0 + 1

)
+ βG̃hiω̃

)
cosh(φ1x̃)

iω̃
(
αD̃oxφ1 sinhφ1 + coshφ1

) − eη̃
0

c̃01 cosh(φ0x̃)

iω̃ coshφ0
(12)

where the auxiliary parameters φ0 and φ1 are given by85

φ0 =

√
eη̃

0

D̃ox

, φ1 =

√
eη̃

0

+ iω̃

D̃ox

. (13)
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Measurable admittance G̃h appears on the right side of Eq.(12). Thus, to calculate G̃h we need a closing relation:86

c̃1(0) = c̃0, or G̃(0) = G̃0. The value G̃0 at the membrane surface can hardly be measured and hence the closing relation87

introduces a model parameter G̃0 (see below). Setting in Eq.(12) x̃ = 0, equating the resulting expression to G̃0 and88

solving for G̃h, we get the dimensionless zeta�impedance ζ̃ = 1/G̃h:89

ζ̃ =
iω̃β coshφ0

c̃01e
η̃0

((
αD̃oxφ1 sinhφ1 + coshφ1

)(
1 +

iω̃G̃0 coshφ0
c̃01e

η̃0

)
− αD̃oxφ0 sinhφ0 − coshφ0

)−1

(14)

Eq.(14) is the general solution for zeta�impedance of a PEM fuel cell cathode operating at high stoichiometry of the oxygen90

�ow.91

The contribution of oxygen transport in the GDL to ζ̃ is taken into account by the coe�cients α and β in the right92

boundary condition to Eq.(9). In�nite GDL oxygen di�usivity (zero GDL impedance) corresponds to α = 0 and β = 1.93

Thus, setting α = 0 and β = 1 in Eq.(14) we get zeta�impedance of the CCL only:94

ζ̃ccl =
iω̃ coshφ0
c̃01e

η̃0

((
1 +

iω̃G̃0 coshφ0
c̃01e

η̃0

)
coshφ1 − coshφ0

)−1

(15)

B. Zeta�impedance and electric impedance95

In the limit of fast proton transport in the CCL considered here, it is possible to establish relation between ζ�impedance96

and electric cell impedance Z. We begin with the proton current conservation equation in the CCL:97

Cdl
∂η

∂t
+
∂j

∂x
= −i∗

(
c

cinh

)
exp

(η
b

)
(16)

With the dimensionless variables, Eq.(5), Eq.(16) takes the form98

ξ2
∂η̃

∂t̃
+
∂j̃

∂x̃
= −c̃ exp η̃, where ξ =

√
Cdlb

4Fcinh
. (17)

Substituting η̃ = η̃0 + η̃1(ω̃) exp(iω̃t̃), j̃ = j̃0(x̃) + j̃1(x̃, ω̃) exp(iω̃t̃), c̃ = c̃0(x̃) + c̃1(x̃, ω̃) exp(iω̃t̃) into Eq.(17), and99

taking into account smallness of perturbation amplitudes, at �rst order we get100

iω̃ξ2η̃1 +
∂j̃1

∂x̃
= −eη̃

0 (
c̃1 + c̃0η̃1

)
(18)

where, by assumption η̃1 is independent of x̃. Dividing this equation by η̃1, and introducing electric admittance Ã = j̃1/η̃1,101

we get the linear problem for Ã:102

iω̃ξ2 +
∂Ã

∂x̃
= −eη̃

0
(
G̃+ c̃0

)
, Ã(1) = 0 (19)

where G̃ and c̃0 on the right side are given by Eqs.(12) and (11), respectively. Solving Eq.(19) and setting x̃ = 0 in the103

solution, we �nd104

Ã(0) = iω̃ξ2 +
(
p eη̃

0
) sinhφ1

φ1
+ c̃01e

η̃0

(
ieη̃

0

ω̃
+ 1

)
tanhφ0
φ0

(20)

where p is the coe�cient at cosh(φ1x̃) in Eq.(12):105

p =
eη̃

0

c̃01

(
αD̃oxφ0 tanhφ0 + 1

)
+ βG̃hiω̃

iω̃
(
αD̃oxφ1 sinhφ1 + coshφ1

) (21)



5

The cathode electric impedance is106

Z̃ =
η̃1

j̃1

∣∣∣∣
x̃=0

=
1

Ã(0)
. (22)

Setting in Eq.(20) Ã(0) = 1/Z̃ and G̃h = 1/ζ̃, we get an algebraic equation relating Z̃ and ζ̃. After simple algebra we107

�nally �nd the relation of cathode zeta�impedance ζ̃ and electric impedance Z̃:108

1

ζ̃
− qφ1

βeη̃0Z̃
= −qφ1

β

(
iω̃ξ2

eη̃0
+ c̃01

(
ieη̃

0

ω̃
+ 1

)
tanhφ0
φ0

)
+

ieη̃
0

c̃01
βω̃

(
αD̃oxφ0 tanhφ0 + 1

)
(23)

where109

q = αD̃oxφ1 + cothφ1. (24)

With α = 0 and β = 1, Eq.(23) reduces to the relation of CCL zeta�impedance ζ̃ccl and electric impedance Z̃ccl:110

1

ζ̃ccl
− φ1

tanh(φ1)eη̃
0Z̃ccl

= − φ1
tanhφ1

(
iω̃ξ2

eη̃0
+ c̃01

(
ieη̃

0

ω̃
+ 1

)
tanhφ0
φ0

)
+

ic̃01e
η̃0

ω̃
(25)

Eqs.(23) and (25) allow one to express ζ̃ through Z̃ and vice versa.111

C. Strong oxygen consumption in the CCL112

Generally, when �tting experimental zeta�spectra, G̃0 in Eq.(14) can be claimed as a �tting parameter. At present, the113

literature data on zeta�spectra are scarce and validity of this conjecture is di�cult to verify. However, in the case of strong114

oxygen consumption in the CCL, G̃0 could be set to zero, which greatly simpli�es the analysis. With G̃0 = 0, Eq.(14)115

simpli�es to116

ζ̃∗ =
iω̃β coshφ0

c̃01e
η̃0

(
αD̃ox

(
φ1 sinhφ1 − φ0 sinhφ0

)
+ coshφ1 − coshφ0

)−1

(26)

where the upper asterisk means that Eq.(26) is valid at a high rate of oxygen consumption in the CCL. This condition holds117

if the cell current density exceeds the characteristic current density jox for oxygen transport in the CCL:118

j0 & jox =
4FDoxc

0
1

lt
(27)

Importantly, Eq.(26) is obtained not using the charge conservation equation. Furthermore, from Eqs.(5) it follows that119

Eq.(26) does not contain double layer capacitance, meaning that the limiting zeta�impedance ζ̃∗ is insensitive to the120

charge�transfer process. Thus, ζ̃∗ is particularly useful when the charge�transfer and oxygen transport frequencies are close121

to each other and standard EIS cannot separate them.122

In the limit of strong oxygen consumption, the CCL polarization curve is13123

j̃0 = j̃ox

√
eη̃

0

D̃ox

, or eη̃
0

= D̃ox

(
j̃0

j̃ox

)2

(28)

Eq.(28) allows us to express eη̃
0

through j̃0 in Eq.(26).124

Setting α = 0 and β = 1 in Eq.(26) (a limit of zero GDL impedance), we get the CCL high�current concentration125

impedance:126

ζ̃∗ccl =
iω̃ coshφ0

c̃01e
η̃0 (coshφ1 − coshφ0)

(29)

The same result can be obtained by passing to the limit D̃b →∞ in Eq.(26). The Nyquist plots of ζ∗ and ζ∗ccl are shown127

in Figure 2a; Figure 2b depicts the frequency dependencies of imaginary part of ζ̃ and ζ̃ccl. Two distinct features are seen:128
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Tafel slope b, V 0.03

Exchange current density i∗, A cm−3 10−3

Oxygen di�usion coe�cient

in the CCL14, Dox, cm
2 s−1 10−4

Oxygen di�usion coe�cient

in the GDL14, Db, cm
2 s−1 2 · 10−2

Catalyst layer thickness lt, cm 10 · 10−4 (10 µm)

Gas di�usion layer thickness lb, cm 200 · 10−4 (200 µm)

Cell current density j0, A cm−2 1.0

Pressure Standard

Cell temperature T , K 273 + 80

TABLE I. The cell parameters used in calculations.

FIG. 2. (a) The Nyquist spectra of ζ̃, Eq.(26) (solid line), and of ζ̃ccl, Eq.(29) (dashed line). ζ̃0 marks the static state of
zeta�impedance. (b) The frequency dependence of imaginary part of impedances in (a). Parameters for the calculations are
listed in Table I.

(i) the contribution of GDL oxygen transport reduces the diameter of the Nyquist curl (Figure 2a), and (ii) it lowers the129

characteristic frequency of the curl (the leftmost peak in Figure 2b). Note also that the systems reach the steady state at130

f ' 0.1 Hz (Figure 2b).131

Position fmax of the leftmost peak of − Im (ζ∗) on the frequency scale is proportional to the GDL oxygen di�usivity132

(Figure 3). However, the dependence of this peak frequency on the GDL thickness is not fmax ∼ l−2
b , as one might expect133

by analogy with the Warburg �nite�length formula. The linear dependence indicated in Figure 3 is valid for lb = 0.02 cm;134

for other values of lb the slope of the straight line is di�erent. Quite analogous, position of the leftmost peak of − Im (ζ∗ccl)135

on the frequency scale is proportional to the CCL oxygen di�usivity (Figure 4). Again, the parameters of �tting line in136

Figure 4 are valid for the CCL thickness of 10 µm; for other thicknesses the linear dependence would be di�erent. Lowering137

of CCL oxygen di�usivity dramatically lowers the diameter of Nyquist arc and leads to formation of multiple high�frequency138

loops in the Nyquist spectrum (Figure 5). This feature is a qualitative signature of a low Dox value.139

The equations for static points ζ̃0 and ζ̃0ccl (Figure 2a) can be derived from Taylor series expansion of the functions 1/ζ̃140
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FIG. 3. Position of the �rst (leftmost) peak of − Im (ζ∗) (Figure 2b) on the frequency scale vs. GDL oxygen di�usivity Db.

FIG. 4. Position of the �rst (leftmost) peak of − Im (ζ∗ccl) (Figure 2b) on the frequency scale vs. CCL oxygen di�usivity Dox.

FIG. 5. (a) The Nyquist spectrum of ζ∗ for Dox = 10−5 cm2 s−1. (b) The frequency dependence of imaginary part of impedance
in (a).
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and 1/ζ̃ccl, respectively, at ω̃ = 0. The �rst terms of expansion give141

ζ̃0 =
2

c̃01

(
j̃0

j̃ox
tanh

(
j̃0

j̃ox

)
+
D̃ox l̃b

D̃b

j̃0

j̃ox

(
1 +

j̃0

j̃ox
−

exp
(
−j̃0/j̃ox

)
cosh

(
j̃0/j̃ox

) ))−1

(30)

142

ζ̃0ccl =
2

c̃01
(
j̃0/j̃ox

)
tanh

(
j̃0/j̃ox

) (31)

As expected, Eq.(30) transforms to Eq.(31) in the limit of D̃b →∞. In the dimension form, Eqs.(30), (31) read143

ζ0 =
2b

c01

(
j0
jox

tanh

(
j0
jox

)
+
Doxlb
Dblt

j0
jox

(
1 +

j0
jox
− exp (−j0/jox)

cosh (j0/jox)

))−1

(32)

144

ζ0ccl =
2b

c01 (j0/jox) tanh (j0/jox)
(33)

Eqs.(32),(33) can be used to estimate the oxygen di�usion coe�cients in the CCL and GDL from the static point of145

zeta�spectrum. For j0 & jox, we may set tanh (j0/jox) ' 1 and from Eq.(33) it follows that ζ0ccl ∼ jox ∼ Dox. Moreover,146

lowering of Dox lowers the second term in brackets in Eq.(32), and the dependence of ζ0 on Dox also tends to linear:147

ζ0 ∼ Dox. This explains dramatic shrinking of ζ0 Nyquist spectrum in Figure 5a as compared to Figure 2a.148

In the limit of large oxygen consumption considered in this section, the right side of Eq.(19) is zero. It can be shown149

that in this limit, ∂Ã/∂x̃|x̃=0 = −1/Z̃ and from Eq.(19) it follows that electric impedance Z̃ tends to impedance of a pure150

capacitor: Z̃ = 1/(iω̃ξ2). Thus, electric impedance is of limited use in this regime, while zeta�impedance gives the cell151

oxygen transport parameters.152

D. Qualitative comparison with experiment153

Engebretsen et al.2 measured pressure impedance spectra by applying acoustic signal to the PEMFC �ow �eld. The data
in2 are reported as plots of absolute value and phase angle of pressure impedance vs. frequency. Figure 6 shows the data2

recalculated as ζ�impedance using

ζ =
δη

δc
= RT

δV

δp
= RT

∣∣∣∣δVδp
∣∣∣∣ exp(iθ)

where δp is the amplitude of pressure perturbation applied to the cell, δV is the voltage response, and θ is the phase angle.154

The shape of model spectra in Figure 2 is similar to the shape of experimental spectrum in Figure 6. The spectrum in155

Figure 6 has been measured using the standard PEM fuel cell at j0 = 0.8 A cm−2 and we demonstrate only qualitative156

resemblance of model and experimental spectra. Note that the spiral behavior of zeta�spectra at high frequencies has been157

reported in3.158

The model above is developed assuming fast proton transport in the CCL. This means that the cell current density must159

be much less than the characteristic current for proton transport in the CCL:160

j0 � j∗ =
σpb

lt
(34)

where σp is the CCL proton conductivity. In a working PEMFC, σp ' 0.02 S cm−1, hence with b = 0.03 V and lt = 10·10−4
161

cm we get j∗ = 0.6 A cm−2. Thus, the optimal regime for measuring ζ in a cell would be close to the cell current density162

of about 100 mA cm−2. On the other hand, Eq.(27) must hold for equations of this section to be valid. Ful�llment163

of Eq.(27) can be provided by lowering inlet oxygen concentration, in order for the working current density exceeded the164

oxygen�transport current density jox.165

The model above assumes uniform static oxygen concentration, local current density and pressure along the channel.166

These conditions hold if stoichiometry of oxygen �ow is high, the channel is short and the pressure perturbation is applied167

over the whole cathode �ow �eld, as in experiments2. The model is not applicable for the cases of large pressure drop along168

the channel and/or low oxygen stoichiometry.169
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FIG. 6. The experimental Nyquist spectrum of ζ�impedance of a standard PEM fuel cell at the cell current of 0.8 A cm−2

(Ref.2). The absolute value of pressure impedance |δV/δp| and the phase shift angle θ have been digitized from Figure 2 of
Ref.2. Noisy curve is explained by poor accuracy of digitizing.

IV. CONCLUSIONS170

We report analytical solutions for concentration (zeta�) impedance of a PEM fuel cell cathode. Oxygen transport in the171

catalyst and gas di�usion layers are taken into account; oxygen concentration over the whole active area is assumed to be172

constant (large stoichiometry of the air �ow). The system of linear equations for the oxygen concentration perturbation173

amplitude in the porous layers is obtained by linearization and Fourier�transform of oxygen mass transport equations. The174

system is solved leading to the formula for the zeta�impedance ζ = δη/δc. A formula relating ζ�impedance and standard175

�electric� impedance Z is obtained.176

The solution for ζ contains free model parameter, the inverse value of zeta�impedance at the catalyst layer/membrane177

interface. In the limit of large oxygen consumption in the catalyst layer, this parameter can be set to zero, which gives178

simple relations for the zeta�impedance and for its static limit. The latter relation allows one to estimate oxygen transport179

parameters of the CCL and GDL from zeta�spectra. Qualitative resemblance of the model and experimental spectrum180

available in literature is demonstrated.181
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Nomenclature
˜ Marks dimensionless variables

A Electric admittance, Ω−1cm−2

b ORR Tafel slope, V

Cdl Double layer volumetric capacitance, F cm−3

c Oxygen concentration in the CCL, mol cm−3

cb Oxygen concentration in the GDL, mol cm−3

c01 Static oxygen concentration at

the CCL/GDL interface, mol cm−3

ch Oxygen concentration in the channel, mol cm−3

cinh Reference (inlet) oxygen concentration, mol cm−3

Db Oxygen di�usion coe�cient in the GDL, cm2 s−1

Dox Oxygen di�usion coe�cient in the CCl, cm2 s−1

F Faraday constant, C mol−1

G̃ = c̃1/η̃1, dimensionless concentration

admittance. Note that ζ̃ = 1/G̃

i∗ ORR volumetric exchange current density, A cm−3

i Imaginary unit

j Local proton current density in the CCL, A cm−2

jox Characteristic current density

of oxygen transport, A cm−2, Eq.(27)

j∗ Characteristic current density

of proton transport, A cm−2, Eq.(34)

j0 Cell current density, A cm−2

lb GDL thickness, cm

lt CCL thickness, cm

x Coordinate through the CCL and GDL, cm

Z Electric impedance, Ω cm2

207

Subscripts:208

209

0 Membrane/CCL interface

1 CCL/GDL interface

ccl Cathode catalyst layer

h Channel

t Catalyst layer

210

Superscripts:211

212

0 Steady�state value

1 Small�amplitude perturbation

∗ At large cell current
213

Greek:214

215

α, β Dimensionless auxiliary parameters, Eq.(7)

η ORR overpotential, positive by convention, V

ζ Concentration impedance, V cm3 mol−1

φ0, φ1 Auxiliary dimensionless parameters, Eq.(13)

σp CCL proton conductivity, S cm−1

ω Angular frequency of the AC signal, s−1

216


